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Relaxation fluctuations about an equilibrium in quantum chaos

Arul Lakshminarayan*
Physical Research Laboratory, Navarangapura, Ahmedabad, 380009, India

~Received 26 March 1997!

Classically chaotic systems relax to coarse-grained states of equilibrium. Here we numerically study the
quantization of such bounded relaxing systems, in particular the quasiperiodic fluctuations associated with the
correlation between two density operators. We find that when the operators, or their Wigner-Weyl transforms,
have obvious classical limits that can be interpreted as piecewise continuous functions on phase space, the
variance of the fluctuations can distinguish classically chaotic and regular motions, thus providing a diagnostic
device of quantum chaos. We uncover several features of the relaxation fluctuations that are shared by disparate
systems thus establishing restricted universality. If we consider the nonlinearity driving the chaos as
pseudotime, we find that the onset of classical chaos is indicated quantally as the relaxation of the relaxation
fluctuations to a Gaussian distribution.@S1063-651X~97!14608-6#

PACS number~s!: 05.45.1b, 03.65.Sq
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I. INTRODUCTION

Classical dynamical systems can be classified into a h
archy of deterministic randomness. We have well stud
examples from integrable systems to Bernoulli systems, fr
the regular to those that are in a coarse grained manner i
tical to stochastic processes. An important notion in this c
text is that of mixing, as exemplified in the now class
‘‘Coke-rum’’ mixture of Arnold and Avez@1#. Apart from
the fundamental role it plays in deterministic randomne
alias chaos, it is the backbone of the foundations of class
statistical mechanics. While ergodicity is compatible w
equilibrium, it is mixing that would ensure the drive to th
state.

Quantum dynamical systems are not so neatly cate
rized. Quantum mixing remains a difficult notion. There a
specific examples where indeed mixing can be said to oc
in the configuration space, inasmuch as any two spatial w
functions decay and decorrelate exactly as classical Liouv
phase space densities@2#. Yet these are rather special sy
tems generally open and with a continuous spectra. The
not address the issue in more generic situations. The
nomenon of quantum suppression of classical chaos in d
sive systems is now well studied, and several localizat
mechanisms have been put forward that inhibit quant
mixing @3#, yet the issues in the situation of ‘‘hard chaos
for bounded chaotic systems relaxing to an equilibrium h
not been sufficiently addressed.

This paper studies quantum objects that are obviou
connected to the twin issues of ergodicity and mixing in
classical limit. In the process we use models having a
crete spectra whose classical limit is known to be chao
The most convenient for our purposes is the quantization
two-dimensional area preserving maps on the torus—a m
studied subject. The Hilbert space is then finite dimensio
and we have fully all the contradictions between quant
and classical chaos, while retaining the attractive feature
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being able to do the quantum mechanics up to machine
cision and size.

Let the relevant classical phase space beV. This could
be, for instance, the energy shell on which the Hamilton
flow is restricted. We may formulate mixing in terms of e
ther phase space functions or densities. LetA andB be two
subsets of the phase space such that they do not intersec
xA(x) andxB(x) be the two characteristic functions of the
subregions. Let the flow integrated for a timet be denoted by
f t, this could be a continuous flow or a discrete map. W
formulate this for the case of maps in which caset is an
integer. The invariant measure of the flow is denoted bym,
in the present context of area preserving maps this is sim
the physical area of the phase space region.

The central quantity of interest is the correlation betwe
the functionsxA and xB . In more graphic language, as th
subregionA evolves with the motion the correlation is th
fractional area of its intersection with the regionB. If in the
long time limit this factorizes into the fraction of the areas
A and B we have mixing. In other words the fraction ofA
systems inB is the fractional area ofB in the long time limit.

m„f t~A!ùB…/m~A!→m~B!/m~V!. ~1.1!

Mixing systems are a step above ergodic ones in the hie
chy of classical dynamical systems. Ergodicity is the equa
of the time average and phase space average of almos
points in the phase space. This can also be formulated
decorrelation on the average. Thus a system is ergodic i

lim
T→`

1

T(
t51

T

m„f t~A!ùB…/m~A!5m~B!/m~V!. ~1.2!

Classical mixing systems are characterized by a serie
complex numbers or resonances that dictate the rate of d
of correlations. Thus for purely hyperbolic or axiomA sys-
tems we can write

m„f t~A!ùB…/m~A!2m~B!/m~V!5(
i

Ciexp~l i t !.

~1.3!
2540 © 1997 The American Physical Society
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56 2541RELAXATION FLUCTUATIONS ABOUT AN . . .
Thel i are the so-called Ruelle resonances and are in gen
complex numbers with negative real parts independent of
particular partitionsA and B. Explicit calculation of these
resonances is a challenging part of dynamical syste
theory; there are special models that are isomorphic to fi
Markov processes for which these can be analytically fou
for example, the multibaker maps@4,5#.

What we wish to study below are quantities in quantu
mechanics that are naturally related to the classical corr
tion functions defined above. In particular we will analy
the long time behavior of these functions as we expect th
to be purely quantum effects in these regimes. For sh
times it is expected, and has been demonstrated, tha
classical and quantum largely coincide@6,7#. The long-time
behavior is of course very interesting because equilibrium
an asymptotic~in time! property. Just as there is ‘‘equilib
rium’’ classically, a state where complete decorrelation h
been practically achieved, we will study the quantum eq
librium and the associated fluctuations, which we will fin
has universal features in a limited manner and is ofte
sensitive measure of whether the classical limit is chaotic
not. The qualifications in the previous statement are ne
sary for reasons we will clarify below.

II. THE QUANTUM CORRELATION FUNCTION

The relevant dynamical space on quantization is a Hilb
spaceHN . For regions of phase space we consider subsp
of the Hilbert space. Since we have in mind classical m
on the two torus, let the Hilbert space be of finite dimensio
ality N. Let there be two distinct density operators onHN
~may or may not be projection operators!, PA and PB . We
will study the cases when these operators onHN have obvi-
ous classical limits as functions of the phase space. We
restrict ourselves initially, and largely, to the case when
operators are projection operators such thatPA1PB5I N ,
where I N is the N-dimensional identity matrix. Classicall
this corresponds to choosing the partitionsA andB such that
AøB5V.

We avoid assigning an operator to a general subregio
phase space, and determining whether this is possible a
~say through the Wigner-Weyl transform of the characteris
function! by restricting this study to particularly simple su
spaces~or density operators! both ofV and onHN and going
from the quantum to the classical instead of vice ver
Choosing an ‘‘arbitrary’’ subspace~or operator! of HN obvi-
ously does not correspond to a proper subregion of the c
sical phase space and we will see that such subspaces d
provide interesting relaxation behaviors in that they do
distinguish between classically chaotic and regular motio
We may also construct operators out of coherent states
provide an adequate quantum equivalent of the character
functions. For instance, ifuz& is the usual coherent state o
the plane, we may consider

PA5E
A
d2zuz&^zu. ~2.1!

We will finally use such operators after adapting them to
toral phase space.
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If we use pure states, sayun&, we can construct the densit
operators as(un&^nu. Let the dimensionality of the subspac
A benA5 f AN; thennB5N2nA5 f BN. The fractionsf A and
f B determine the relative sizes of the partitions and we w
assume below that 1!nA ,nB!N, that is, the subspaces a
large enough to contain many states and be considered
quantum equivalent of a finite~much larger than\) region of
phase space. We will mostly use projection operators that
diagonal in the position basis. In this case the classical reg
corresponding to

PA5 (
n50

f AN21

un&^nu ~2.2!

is the rectangle@0,f A)3@0,1) and the region correspondin
to PB is the rectangle@ f A,1)3@0,1), as the phase space
taken to be the unit torus (q,p)5@0,1)3@0,1).

We now introduce the dynamics as a unitary operatorU
acting on the states ofHN . The central quantity of interest i
then

CAB~ t !5Tr~UtPAU2tPB!/N, ~2.3!

which gives us the overlap of the subspaceA propagated for
time t with the subspaceB. We may note that this is an
important and natural physical quantity to study and has
peared before in several contexts, for example, Ref.@6#. It
can also be viewed as an analog of Landauer conductanc
bound systems and as such should be of considerable im
tance in quantum transport. If in fact there is factorizati
in time then CAB(`) must be compared with
Tr(PA)Tr(PB)/N25 f Af B . The operatorsU used in this pa-
per are briefly described in the Appendix and have been
sentially described before.

SinceU has a discrete and finite spectrum, the correlat
can only be a finite sum of purely oscillatory terms and c
therefore display decay only over short time scales~of the
order of Heisenberg time!. The decorrelation is therefore no
expected. As an extreme quantum example if we cons
the case when the projection operators are constructed o
the basis functions ofU the correlation is zero for all time
This is an extreme case and, for instance, it is not clear w
the classical limit is of the Wigner-Weyl transform of pro
jection operators constructed out of such a basis. We
consider ‘‘generic’’ subspaces and projection operators
any claim of universality made below has to be viewed w
this caveat. We may note that this plagues random ma
theory descriptions of eigenfunctions as well, as it involv
basis-dependent quantities. Here the basis dependence e
as the basis in which the projection operators are diagon

It was suggested earlier using quantized multibaker m
that the quantum correlation function approached the cla
cal correlation function in the classical limit correspondi
here toN→` @7#. Certain remarkable features of quantu
relaxation were noted there including relaxation localizat
and effects of symmetries on transport. Here we wish
study the fluctuation properties more closely and unco
possible universal features. Therefore we study rather s
dard models such as the Taylor-Chirikov~standard! map@3#,
the kicked Harper system@9#, and the baker map@10# al-
though most of these models do not have explicit express
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2542 56ARUL LAKSHMINARAYAN
for the classical Ruelle resonances and are probably
axiomA systems~except the baker map!. However, it is very
reasonable to assume that in certain well-known param
regimes they can be for all practical purposes mixing s
tems.

Normalizing the correlation so that the classical limit, if
exists, is for large times unity we study the quant
c(t)5CAB(t)/ f Af B , where from now on we will acknowl-
edge implicitly the dependence of the correlation on the p
ticular choice of partitions. Figure 1 shows an example of
generic behavior ofc(t), this particular data being for th
standard map at two different values of the inverse Pla
constantN for the same classical value of the chaos para
eter. The initial relaxing behavior is not clear from the fi
ures as the time scales are much larger than the inverse o
principal Ruelle resonance. The projection operators used
diagonal in the discrete position basis,PA is given by Eq.
~2.2!, and PB5I N2PA . The position eigenbasis is denote
as un& and in this figuref A5 f B51/2.

We note that in this paper we have used dimension
scaled position and momentum coordinates and that the
is measured as multiples of the period of the kick, taken
unity. Modulo-one conditions restrict the phase space to
unit torus so that the dimension of the Hilbert spaceN is
related to the Planck constant asN51/h and the classica
limit corresponds toN→` while the parameters of the ma
such as the kick strengths are scaled and dimensionless

The first observation is that the quantum correlation is
fact quite close to the classical value of unity; second is t
the average of the oscillations in relation to unity will give
some information about whether quantum mechanics is
hibiting transport or otherwise; third, this average must in
classical limit tend to unity, fourth is the observation that t
fluctuations are getting smaller in the classical limit and m
tend to zero. Some of these observations have been mad
substantiated earlier@7#, here we will elaborate and prese
more results.

FIG. 1. The relaxation fluctuations as a function of time for t
standard map withK520 and~a! N5100 ~b! N5200.
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Previous work on the use of time developing states
study the quantum manifestations of chaos have basic
concentrated on the survival probability of a pure state@8#.
This corresponds to the choicePA5PB5uc&^cu with an ar-
bitrary normalized initial stateuc& and thusf A5 f B51/N.
Such survival probabilities averaged over random init
states show a distinct difference between chaotic and reg
systems. In contrast what we study in this paper are den
~or projection! operators and not pure states. It becom
quite important thatf AN and f BN are large and are of the
order of the Hilbert space dimensionalityN itself. Besides
any ‘‘arbitrary’’ state can be chosen for the calculation of t
survival probability while we will restrict ourselves to thos
projection operators that can be interpreted as phase s
regions in the classical limit. This is to ensure that the cl
sical transition to chaos is fully reflected in the quantu
relaxation, as will be illustrated below.

A. The average

The quantum ‘‘equilibrium’’ as opposed to the classical
a highly oscillatory state, with the fluctuations coming fro
the discrete nature of the spectrum. We will denote the ti
average of the correlation function by^c& and its variance by
s2. These quantities can be written in terms of the eig
functions of the evolution operatorU, which satisfy the fol-
lowing equation:

Uucm&5eiEmucm&, m50, . . .N21. ~2.4!

The real numbersEm are the eigenangles of the quantu
map, and we assume that there are no exact degenerac
is the generic case. The correlation is then

c~ t !5
1

N fA~12 f A! (
m1 ,m2

(
n150

N fA21

(
n25N fA

N21

eit ~Em2
2Em1

!^n2ucm1
&

3^cm1
un1&^n1ucm2

&^cm2
un2&. ~2.5!

Thus we can express the average quite simply as

^c&5
1

N fA~12 f A! (m50

N21

(
n50

f AN21

(
n85 f AN

N21

u^nucm&u2u^n8ucm&u2.

~2.6!

Thus the average is a measure of the distribution of
eigenvectors in the subspacesA and B. We suggest that
^c& , 1 generically, indicating a certain reluctance to pa
ticipate equally in both the partitions in proportion to the
sizes. Time-dependent quantum chaotic systems such a
kicked rotor on the cylinder are known to suppress class
chaos and lower diffusion@3#. The corresponding suppres
sion in the case of bounded systems is in the average re
ation such as measured by^c&. We note that the sum ove
n and n8 expressing the average can be factored into t
single sums, and we see that if, for instance, we had a pa
symmetry forcing the wave function to be essentially iden
cal in the subspacesA andB we would havê c&51, which
is indeed the case for the fluctuations shown in Fig. 1. T
averagê c& could also be greater than unity in the presen
of symmetries, or if the partitionB is identical toA. Al-
though in the absence of any special symmetry it is true
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56 2543RELAXATION FLUCTUATIONS ABOUT AN . . .
classical chaos will tend to enhance the average making
closer to unity, this effect is quite marginal and practicall
nonexistent when a transition to complete classical chaos
achieved.

Figure 2~a! shows the average for the quantized bak
map implementing the Bernoulli scheme (2/3,1/3) as a fun
tion of the inverse Planck constantN. The partitions are such
that f A5 f B51/2. Shown is the deviation of the average from
unity and an approximate power law is observed for largeN.
Thus we can write

^c&;12aN2g, ~2.7!

and in this caseg'3/4. The relaxation localization is im-
plied bya being positive. Figure 2~b! shows the same quan-
tity for the standard map and we find for the partitio
f A51/4,f B53/4 thatg'1, with a different value ofa. We
note that in both the cases there is a small oscillation abo
the fitted straight line. Figure 3~a! shows the variation of the
average with the classical kick parameterK for the standard
map, the map undergoing a transition to complete chaos w
the breaking of the last KAM torus atK'1. The partitionA
was such thatf A51/4 andB was the complementary space
Also illustrated is the localization effect and the same for th
kicked Harper model in Fig. 3~b!. The kicked Harper map, or
simply the Harper map, undergoes a transition to chaos at
kick strengthg'0.63 ~see Appendix!.

B. The variance and the distribution

A promising candidate is the variance of the fluctuation
which exist irrespective of the symmetries of the system
This can also be expressed in terms of the eigenfunctions
the system. In the particular case whenPA1PB5I N , writing
for f A simply f , we get after some simplifications

FIG. 2. The average of the fluctuations for~a! the quantum
baker map quantizing the~2/3,1/3! Bernoulli scheme and~b! the
standard map withK520. Shown is the logarithm of the deviation
from unity as a function of ln(N).
it

is

r
-

ut

th

e

he

s
.
of

s25
2

N2f 2~12 f !2 (
m2.m1

U (
n50

f N21

^nucm2
&^cm1

un&U4

.

~2.8!

Thus the variance measures a correlation between dis
pairs of eigenfunctions. There is a coherent partial sum o
N f states that makes the variance nontrivial and perh
nonuniversal.

FIG. 4. The scaled standard deviationsN as a function of the
kick strength for~a! the standard map,~b! the Harper map. The
solid line corresponds toN5300, the dotted line toN5200 and the
dashed line toN5100.

FIG. 3. The average relaxation as a function of the kicki
strength for~a! the standard map,~b! the Harper map. The solid line
corresponds toN5300 while the dotted one toN5200.
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2544 56ARUL LAKSHMINARAYAN
Figure 4~a! shows the standard deviations scaled tosN
as a function of the kick strength in the case of the stand
map. The transition to classical chaos atK'1 is visible in
the variance of the fluctuations as a point at which it atta
an approximately constant value. The relaxation fluctuatio
are therefore significantly different depending on the d
namical nature of the classical limit, being in general larg
for regular systems than chaotic ones, and thus provid
novel diagnostic device for the study of quantized chao
systems.

Figure 4~b! shows identical quantities for the case of th
kicked Harper map. The variance seems to have no furt
dependence on measures of chaos and scales as\ quite uni-
versally when the classical limit is chaotic. This scaling
shown explicitly in Fig. 5 for three systems in the chaot
regime: the kicked rotor, the kicked Harper map, and t
usual quantum baker map. The fact that the three lines,
slope close to21, are practically on top of each other i
evidence of a limited universality of the relaxation fluctua
tions. The limits to universality will be discussed in the fo
lowing, but also shown in the figure are the results for
generalized baker map implementing the (2/3,1/3) Bernou
scheme, which clearly shares the same slope but is differ
otherwise from the other cases, which are symmetric.

When the classical limit is regular there is still evidenc
for scaling with \ but with nonuniversal exponents. Thu
Fig. 6 suggests that for the standard map,

s;N2g, ~2.9!

with the exponentg increasing to unity as the kick strength
is increased to induce the transition to chaos. WhenK520 or

FIG. 5. The standard deviation as function of the scaled inve
Planck constantN on a logarithmic plot. The solid line correspond
to a standard map withK520, the dotted line to the Harper map
with g54, the small dashed line to the usual symmetric quantu
baker map, and the large dashed line to the unsymmetric (2/3,1
baker map.
rd

s
s
-
r
a

c

er

e
of

a
lli
nt

K530 the exponent is already close to unity and the t
cases are practically indistinguishable.

When f Þ1/2 the relaxation is between nonsymmetrica
related partitions of unequal measures. The quantum v
ance is studied directly as a function off . Still we are con-
sidering the case when the two partitions complement e
other. Results not shown here indicate that the dependen
the standard deviation onN ~or \) remains the same
namely, N21. Thus we may conjecture the existence of
functiong( f ) such thats 5 g( f )/N. The functiong( f ) will
naturally depend on the choice of the density operatorsPA
and PB . If further we choose these operators as the proj
tion operators described by the Eq.~2.2!, we numerically
find the relation

s 5
p2~2 f !b

16N f~12 f !
, 0, f <1/2, ~2.10!

whereb'0.83. The constant has been identified as relate
the numberp by averaging over differentK in the chaotic
regime. Beyondf 51/2 symmetry of the maps ensures th
s( f )5s(12 f ). It is to be emphasized that althoughs is
independent of model parameters likeK, we are assuming
that there has been a completed transition to full scale ch

Figure 7 comparessN f(12 f ) with the fit p2(2 f )b/16
for the standard map, the Harper map and the baker m
The standard map and the Harper fall practically on top
each other while the baker map shows deviations altho
the trend is maintained. The insensitivity of this curve to t
parameterK or g indicates that once chaos is achieved t
fluctuations are essentially the same. The curvesN as a
function of f is thus interesting in that it has restricted un
versal features. The Harper and the standard maps be
almost identically while there are deviations for the bak

e

3)

FIG. 6. Same as Fig. 5 for the standard map at different val
of the kick strengthK, the dashed line corresponds toK530, while
the solid toK520.
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moreover the curve is most definitely dependent on the
eratorsPA and PB , but once this is fixed the fluctuation
might be model independent.

Though the fluctuations are not universal they do dis
guish classically regular and chaotic motions when the
eratorsPA and PB have meaningful classical limits. If thi
condition is violated then the fluctuations are incapable
such a separation. This is in contrast to RMT based ar
ments for the randomness of a wave function, where so m
information is lost that in any generic basis the wave fu
tions of a classically chaotic system are universally distr
uted. We will illustrate this in two ways. In the first w
choose PA5(nevenun&^nu and PB is the complementary
space. Clearly in the classical limit these projection opera
do not describe meaningful phase space regions. In the
ond we choose half the eigenbasis of the kicked rotor
K5155 for constructingPA and PB is the complementary
space. Figure 8 shows that the variance does not captur
transition to chaos at aroundK51 for the kicked rotor, un-
like in the cases above, one of which has been repeated
comparison purposes. However, once the transition to ch
is complete the three standard deviations seem to coinc
We have diagonalized a standard map atK5155 to ensure
that there are no special correlations with the system
aroundK54.

Finally we construct the operators out of coherent sta
so that the interpretation as subspaces of phase space
tuitively obvious in the classical limit. We use the discre
toral coherent states developed by Saraceno@11#. Let um,n&
be such a state that is localized at (q5m/N,p5n/N) on the
unit torus. We take

PA5 (
~q,p!PA

um,n&^m,nu

FIG. 7. The standard deviation normalized tosN f(12 f ) as a
function of f . The solid line is the fit~see text!, while the dotted line
corresponds to the standard map atK520, the short dashed line t
the Harper map withg54 and the long dashed line to the usu
baker map. In all casesN5200.
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and PB is similarly constructed. In the computation show
below we have takenA to be the subspace@0,1/2)3@0,1/2)
and B to be @1/2,1)3@1/2,1). The variance is evaluated a
above with some minor differences, sincePBÞ12PA . The
measures of the quantum subspaces areN2/4, as we have
used normalized coherent states. The eigenfunctions are
pressed in the coherent state basis and the variance is e
ated. Figure 9 shows the results of this computation and o
more we recover the property that the variance captures
classical transition to chaos. Not presented are some m
results, in particular the computations using the moment
basis vectors, as these simply reflect the general trend
ready noted above.

We have been studying the mean and standard devia
of a quantity that is truly a quasiperiodic oscillation; th
distribution of such a quantity ought to be significantly d
ferent from a random process. However, Fig. 10 motiva
that the effect of quantum chaos is to cast the oscillati
into the ubiquitous Gaussian process, and increasingly m
so in the classical limit, thereby indicating that the mean a
standard deviation are sufficient to characterize the re
ation process. The solid line is a Gaussian distribution w
zero mean and standard deviation equal top2/4, as the par-
titions used correspond tof A5 f B51/2. In sharp contrast Fig
11 shows the same for the case of the standard ma
K50.2 when the dynamics is predominantly regular. T
distribution is much broader and is also nonsymmetric. Th
if the parameterK is considered as a pseudo time variab
the onset of chaos is signaled as the realization of a stat
ary state of the relaxation fluctuations—the Gaussian dis
bution.

FIG. 8. The standard deviation as a function of the kick stren
for the standard map withN5200. The dotted line corresponds t
using projection operators constructed out of every alternative
sition basis and the dashed line to projection operators constru
out of the eigenbasis of the standard map atK5155. For compari-
son is shown the case of the usual projection operator from Fig
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2546 56ARUL LAKSHMINARAYAN
III. SUMMARY

We have studied the quasiperiodic relaxation in bou
quantum systems whose classical counterparts relax
coarse grained equilibrium. We have concentrated on
correlations between density operators whose classical li
~or more correctly the limit of their Wigner-Weyl represe
tations! may be interpreted as piecewise continuous fu
tions on phase space. We have observed that in the abs
of special symmetries the average quantum relaxation

FIG. 9. The standard deviation as a function of kick strength
the standard map using the operators constructed out of toral co
ent states, see text.

FIG. 10. The distribution of the relaxation fluctuations using t
first 5000 c(t) values for the standard map withK520 and ~a!
N5100 ~b! N5200. The solid line corresponds to a Gaussian d
tribution.
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smaller than the classical, and we have presented some
ing relations with\.

The relaxation fluctuations have been shown to prov
rather interesting characterization of the quantum moti
They sometimes have universal characteristics altho
these are limited. The kicked map and the Harper model w
identical symmetry properties have been shown to be pra
cally identical in the behavior of their relaxation fluctuation
The standard deviation of these fluctuations have been s
ied and has been shown to decrease to a constant value
a rather sharp change in the values corresponding to the
sition to chaos in the classical system. Thus the fluctuati
provide a way to characterize quantum chaos. The stan
deviation has been shown to scale as\ when there is classi-
cal chaos universally, while it has other nonuniversal pow
law dependencies when the classical motion is not chao

Random matrix theories have been providing a fram
work to study several properties of quantized chaotic s
tems and it is natural to explore the random matrix pred
tions for the quantities studied in this note. It is of spec
interest to place the numerical results in this paper in
context of a generalization of the previous work on surviv
probabilties@8# and work on these aspects is currently und
way.

APPENDIX

The Taylor-Chrikov, or the standard map, or the kick
rotor, used in this paper is described below@3,12#. Let the
classical map be@qt115qt1pt11 , pt115pt2V8(qt11)#,
bothq andp taken mod 1.V8 is the derivative of the kicking
potential, which is assumed to have unit periodicity. T
toral states are assumed to satisfy certain boundary co
tions specified by a point on the dual torus. Letuqn& andupm&
be the position and momentum states th
upm1N&5e22p iaupm& and uqn1N&5e2p ibuqn&, where (a,b)

r
er-

-

FIG. 11. Same as Fig. 10 but for the case whenK50.2 corre-
sponding to predominantly regular motion. The solid line still co
responds to the same Gaussian.
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are real numbers between 0 and 1;N is the dimensionality of
the Hilbert space. Ifb50, upon canonical quantization w
get the finite unitary operator

Un,n85
eip/4

AN
expF22p iNVS n1a

N D GexpS i
p

N
~n2n8!2D .

~A1!

In this paper we have used for the standard m
V(q)5Kcos(2pq)/(2p), anda51/2 which makes the quan
tum map possess an exact parity symmetry aboutq51/2.
The values ofN are restricted to the even integers.

The kicked Harper map@9# on the torus is similar to the
above system except for the momentum dependence. I
Hamiltonian is

H5V1~p! 1 V2~q! (
n52`

`

d~ t2n!,

the quantum map is

Un,n85
1

N
expF22p iNV2S n1a

N D G (
m50

N21

3expF22p iNV1S m1b

N D G
3expS 2p i

N
~m1b!~n2n8! D . ~A2!

For the Harper map used in this paper we have ta
(a5b51/2), V1(p)52g1cos(2pp)/(2p) and V2(q)
52g2cos(2pq)/(2p). This set once again ensures symme
properties of the quantum map. The classical map
-
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-
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@qt115qt1g1sin(2ppt11), pt115pt2g2sin(2pqt)#, again
the mod 1 rule is assumed. Ifg1,2 are equal, as assumed
this paper, the transition to chaos occurs aroundg1,250.63.
In both the kicked Harper model and the rotor the time b
tween kicks has been taken as unity, as anyway there are
parameters in the quantum problem, the scaled Planck
stantN and the kick strength (K or g).

The baker map@10,11# comes in several varieties. It ha
been shown that the usual baker m
@(qt1152qt , pt115pt/2) if 0,qt,1/2 and
(qt1152qt21, pt115(pt11)/2) if 1/2,qt,1] is iso-
morphic to the (1/2,1/2) Bernoulli process. The quantu
baker map on the torus is then the unitary operator

U5GN
21 S GN/2 0

0 GN/2
D , ~A3!

where GN is the finite Fourier transform matrix with ele
ments

~GN!m,n5
1

AN
exp~22p i ~m11/2!~n11/2!/N!.

We have assumed antiperiodic boundary conditio
(a5b51/2) as this is known to preserve classical symm
tries.

The generalized baker map used in this paper is a dyna
cal system implementing the (2/3,1/3) Bernoulli process a
is the classical map „(qt1153qt/2, pt1152pt/3) if
0,qt,2/3 and @qt1153qt22, pt115(pt12)/3# if
2/3,qt,1…. The quantum map is the unitary operator

U5GN
21 S G2N/3 0

0 GN/3
D . ~A4!
@1# V. I. Arnold and A. Avez,Ergodic Problems of Classical Me
chanics~Benjamin, New York, 1968!.

@2# S.Weigert inAdriatico Research Conference and Miniwor
shop, Quantum Chaos, edited by H. A. Cerdeira, R. Ra
maswamy, M. C. Gutzwiller, and G. Casati~World Scientific,
Singapore, 1990!.

@3# F. M. Izrailev, Phys. Rep.196, 299 ~1990!.
@4# Y. Elskens and R. Kapral, J. Stat. Phys.38, 1027~1985!.
@5# P. Gaspard, J. Stat. Phys.68, 673 ~1992!.
@6# O. Bohigas, S. Tomsovic, and D. Ullmo, Phys. Rep.233, 45

~1993!.
@7# A. Lakshminarayan, and N. L. Balazs, J. Stat. Phys.77, 311
~1994!.

@8# F. Leyvrazet al., Phys. Rev. Lett.67, 2921~1991!; Y. Alhas-
sid and N. Whelan,ibid. 70, 572 ~1993!; A. Tameshtit and J.
E. Sipe, Phys. Rev. A45, 8280 ~1992!; J. Wilkie and P.
Brumer, Phys. Rev. Lett.67, 1185~1991!.

@9# P. Leboeufet al., Phys. Rev. Lett.65, 3076~1990!.
@10# N. L. Balazs and A. Voros, Ann. Phys.~N.Y.! 190, 1 ~1989!.
@11# M. Saraceno, Ann. Phys.~N.Y.! 199, 37 ~1990!.
@12# S.J. Chang and K. J. Shi, Phys. Rev. Lett.55, 269 ~1985!.


