PHYSICAL REVIEW E VOLUME 56, NUMBER 3 SEPTEMBER 1997

Relaxation fluctuations about an equilibrium in quantum chaos
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Classically chaotic systems relax to coarse-grained states of equilibrium. Here we numerically study the
guantization of such bounded relaxing systems, in particular the quasiperiodic fluctuations associated with the
correlation between two density operators. We find that when the operators, or their Wigner-Weyl transforms,
have obvious classical limits that can be interpreted as piecewise continuous functions on phase space, the
variance of the fluctuations can distinguish classically chaotic and regular motions, thus providing a diagnostic
device of quantum chaos. We uncover several features of the relaxation fluctuations that are shared by disparate
systems thus establishing restricted universality. If we consider the nonlinearity driving the chaos as
pseudotime, we find that the onset of classical chaos is indicated quantally as the relaxation of the relaxation
fluctuations to a Gaussian distributidis1063-651X%97)14608-4

PACS numbeps): 05.45:+b, 03.65.Sq

I. INTRODUCTION being able to do the quantum mechanics up to machine pre-
cision and size.

Classical dynamical systems can be classified into a hier- Let the relevant classical phase space(heThis could
archy of deterministic randomness. We have well studiede, for instance, the energy shell on which the Hamiltonian
examples from integrable systems to Bernoulli systems, fronflow is restricted. We may formulate mixing in terms of ei-
the regular to those that are in a coarse grained manner ideHler phase space functions or densities. AeindB be two
tical to stochastic processes. An important notion in this consubsets of the phase space such that they do not intersect. Let
text is that of mixing, as exemplified in the now classic XA(X) andxg(x) be the two characteristic functions of these
“Coke-rum” mixture of Arnold and Avez[1]. Apart from stubre_glons. Let the flow_lntegrated foratmn_be denoted by
the fundamental role it plays in deterministic randomness! » this could be a continuous flow or a discrete map. We

alias chaos, it is the backbone of the foundations of classicdPrmulate hthi_s for the case of m;ap; i?l which cases an
statistical mechanics. While ergodicity is compatible With!nteger. The invariant measure of the flow is denoteduby

equilibrium, it is mixing that would ensure the drive to this in the present context of area preserving maps this is simply
state. the physical area of the phase space region.

. The central quantity of interest is the correlation between
Quantum dynamical systems are not so neatly categq—h

. . . e . e functionsy, and xg. In more graphic language, as the
rlzed_. _Quantum mixing remains a Qn‘_ﬁcult notion. There aresubregionA evolves with the motion the correlation is the
specific examples where indeed mixing can be said to occ

Yactional area of its intersection with the regiBnlf in the

in the configuration space, inasmuch as any two spatial Wavf?)ng time limit this factorizes into the fraction of the areas of

functions decay and decorrelate exactly as classical Liouvillg\ andB we have mixing. In other words the fraction Af
phase space densiti¢g]. Yet these are rather special sys- qystems irB is the fractional area d in the long time limit.
tems generally open and with a continuous spectra. They do

not address the issue in more generic situations. The phe- w(E (AYNB) w(A)— w(B) w(Q). 1.1
nomenon of quantum suppression of classical chaos in diffu-

sive systems is now well studied, and several localizatioMiXing systems are a step above ergodic ones in the hierar-
mechanisms have been put forward that inhibit quantunﬁ?hy of cllassmal dynamical systems. Ergodicity is the equality
mixing [3], yet the issues in the situation of “hard chaos” of the time average and phase space average of almost all

for bounded chaotic systems relaxing to an equilibrium hav@0ints in the phase space. This can also be formulated as
not been sufficiently addressed. decorrelation on the average. Thus a system is ergodic if

This paper studies quantum objects that are obviously 1T
connected to the twin issues of ergodicity and mixing in the lim => w(FY(A)NBY w(A)=u(B)/ n(Q). (1.2
classical limit. In the process we use models having a dis- T Ti=1

crete spectra whose classical limit is known to be chaotic.

The most convenient for our purposes is the quantization of Classical mixing systems are characterized by a series of
two-dimensional area preserving maps on the torus—a mucgomplex numbers or resonances that dictate the rate of decay
studied subject. The Hilbert space is then finite dimensionabf correlations. Thus for purely hyperbolic or axiofsys-

and we have fully all the contradictions between quantuntems we can write

and classical chaos, while retaining the attractive feature of

M(ft(A)ﬂB)/M(A)—M(B)/M(Q)ZZ Ciexp(\it).
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1063-651X/97/563)/254(08)/$10.00 56 2540 © 1997 The American Physical Society



56 RELAXATION FLUCTUATIONS ABOUT AN.. .. 2541

The\; are the so-called Ruelle resonances and are in general If we use pure states, s@ty), we can construct the density
complex numbers with negative real parts independent of theperators aZ |n){n|. Let the dimensionality of the subspace
particular partitionsA and B. Explicit calculation of these A ben,=f,N;thenng=N-n,=fgN. The fractionsf 5, and
resonances is a challenging part of dynamical system$g determine the relative sizes of the partitions and we will
theory; there are special models that are isomorphic to finitassume below that<kn,,ng<N, that is, the subspaces are
Markov processes for which these can be analytically foundlarge enough to contain many states and be considered the
for example, the multibaker map4,5]. guantum equivalent of a finitenuch larger thark) region of
What we wish to study below are quantities in quantumphase space. We will mostly use projection operators that are
mechanics that are naturally related to the classical correlatiagonal in the position basis. In this case the classical region
tion functions defined above. In particular we will analyze corresponding to
the long time behavior of these functions as we expect there
to be purely quantum effects in these regimes. For short
times it is expected, and has been demonstrated, that the Pa= Z [n)(n| (2.2
classical and quantum largely coincifig7]. The long-time n=0

behavior is of course very interesting because equilibrium i% the rectanglg0.f ,) X[0,1) and the region corresponding
an asymptotidin time) property. Just as there is “equilib- to Pg is the recténgle{fA,l)x[O 1), as the phase space is
rium” classically, a state where complete decorrelation has,, o1 to be the unit toruéq(p)sz i)><[0 1)

been practically achieved, we will study the quantum equi- ' e
librium and the associated fluctuations, which we will find
has universal features in a limited manner and is often
sensitive measure of whether the classical limit is chaotic or

not. The qualifications in the previous statement are neces- Cag(t)=Tr(UP,UtPg)/N, 2.3
sary for reasons we will clarify below.

faN-1

We now introduce the dynamics as a unitary operator
acting on the states ¢ty . The central quantity of interest is

which gives us the overlap of the subsp@ceropagated for
Il. THE QUANTUM CORRELATION FUNCTION time t with the subspac@.. We may. note that this is an
important and natural physical quantity to study and has ap-
The relevant dynamical space on quantization is a Hilberpeared before in several contexts, for example, Ra&f. It
spaceHy . For regions of phase space we consider subspacegin also be viewed as an analog of Landauer conductance for
of the Hilbert space. Since we have in mind classical mapgound systems and as such should be of considerable impor-
on the two torus, let the Hilbert space be of finite dimensiontance in quantum transport. If in fact there is factorization
ality N. Let there be two distinct density operators iy in time then Cag(®®) must be compared with
(may or may not be projection operatpr®, andPg. We  Tr(P,)Tr(Pg)/N?=f,fgz. The operatord) used in this pa-
will study the cases when these operatorshphave obvi-  per are briefly described in the Appendix and have been es-
ous classical limits as functions of the phase space. We wikentially described before.
restrict ourselves initially, and largely, to the case when the SinceU has a discrete and finite spectrum, the correlation
operators are projection operators such tRat-Pg=1ly,  can only be a finite sum of purely oscillatory terms and can
where | is the N-dimensional identity matrix. Classically therefore display decay only over short time scalgisthe
this corresponds to choosing the partitighandB such that  order of Heisenberg timeThe decorrelation is therefore not
AUB=Q. expected. As an extreme quantum example if we consider
We avoid assigning an operator to a general subregion ahe case when the projection operators are constructed out of
phase space, and determining whether this is possible at alle basis functions of) the correlation is zero for all time.
(say through the Wigner-Weyl transform of the characteristicThis is an extreme case and, for instance, it is not clear what
function) by restricting this study to particularly simple sub- the classical limit is of the Wigner-Weyl transform of pro-
spacegor density operatojoth of (2 and onHy and going  jection operators constructed out of such a basis. We will
from the quantum to the classical instead of vice versaconsider “generic” subspaces and projection operators and
Choosing an “arbitrary” subspacd@r operatoy of Hy obvi-  any claim of universality made below has to be viewed with
ously does not correspond to a proper subregion of the claghis caveat. We may note that this plagues random matrix
sical phase space and we will see that such subspaces do mie¢ory descriptions of eigenfunctions as well, as it involves
provide interesting relaxation behaviors in that they do nobasis-dependent quantities. Here the basis dependence enters
distinguish between classically chaotic and regular motionsas the basis in which the projection operators are diagonal.
We may also construct operators out of coherent states that It was suggested earlier using quantized multibaker maps
provide an adequate quantum equivalent of the characteristthat the quantum correlation function approached the classi-
functions. For instance, iz) is the usual coherent state on cal correlation function in the classical limit corresponding
the plane, we may consider here toN—« [7]. Certain remarkable features of quantum
relaxation were noted there including relaxation localization
and effects of symmetries on transport. Here we wish to
PA:J d?z|z)(z]. (2.1))  study the fluctuation properties more closely and uncover
A possible universal features. Therefore we study rather stan-
dard models such as the Taylor-Chirikstandarg map[3],
We will finally use such operators after adapting them to thehe kicked Harper systerf®], and the baker mapl0] al-
toral phase space. though most of these models do not have explicit expressions
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LS — Previous work on the use of time developing states to
1.05 - N study the quantum manifestations of chaos have basically
ol ] concentrated on the survival probability of a pure s{&e
This corresponds to the choi€=Pg=|¢)( | with an ar-
N i I WLl I . bitrary normalized initial statéy) and thusf,=fg=1/N.
i ‘ 1 Such survival probabilities averaged over random initial

095 [ | (a) ] states show a distinct difference between chaotic and regular

i systems. In contrast what we study in this paper are density
(or projectiony operators and not pure states. It becomes
quite important thaff ,N and fgN are large and are of the
e order of the Hilbert space dimensionalily itself. Besides
105 - . any “arbitrary” state can be chosen for the calculation of the

i 1 survival probability while we will restrict ourselves to those
projection operators that can be interpreted as phase space
regions in the classical limit. This is to ensure that the clas-
i 1 sical transition to chaos is fully reflected in the quantum
05 [ |y ] relaxation, as will be illustrated below.
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Time t (arb‘ units) The quantum “equilibrium” as opposed to the classical is
a highly oscillatory state, with the fluctuations coming from
FIG. 1. The relaxation fluctuations as a function of time for thethe discrete nature of the spectrum. We will denote the time
standard map with =20 and(a) N=100 (b) N=200. average of the correlation function kg) and its variance by

o?. These quantities can be written in terms of the eigen-

for the classical Ruelle resonances and are probably nqctions of the evolution operataf, which satisfy the fol-
axiomA systemgexcept the baker mapHowever, it is very lowing equation:

reasonable to assume that in certain well-known parameter
regimes they can be for all practical purposes mixing sys- Ulgmy=€Emly), m=0,...N—1. (2.4
tems.

Normalizing the correlation so that the classical limit, if it The real numberd€,, are the eigenangles of the quantum
exists, is for large times unity we study the quantity map, and we assume that there are no exact degeneracies as
c(t)=Cap(t)/fafg, where from now on we will acknowl- is the generic case. The correlation is then
edge implicitly the dependence of the correlation on the par- Nfael N-1
ticular choice of partitions. Figure 1 shows an example of thec(t) _ 1
generic behavior ot(t), this particular data being for the NfA(1=Ffa)mim, n1=0 n,=Nfy,
standard map at two different values of the inverse Planck
constantN for the same classical value of the chaos param- X, [NL)(Na] Y ) Y, [N2). (2.5
eter. The initial relaxing behavior is not clear from the fig- o
ures as the time scales are much larger than the inverse of t{élus we can express the average quite simply as

A. The average

(=]

e EmEn)(n| Y,

principal Ruelle resonance. The projection operators used are 1 N-1 faN-1 N-1
diagonal in the discrete position basB, is given by Eq. o) = n 2(n’ 2
(2.2, andPg=1y—P,. The position eigenbasis is denoted (© NfA(l—fA)mzo nzo n TN [l 1 |

as|n) and in this figuref o= fz=1/2. 2.6

We note that in this paper we have used dimensionless
scaled position and momentum coordinates and that the time Thus the average is a measure of the distribution of the
is measured as multiples of the period of the kick, taken agigenvectors in the subspacésand B. We suggest that
unity. Modulo-one conditions restrict the phase space to théc) < 1 generically, indicating a certain reluctance to par-
unit torus so that the dimension of the Hilbert spatds  ticipate equally in both the partitions in proportion to their
related to the Planck constant Bls=1/h and the classical sizes. Time-dependent quantum chaotic systems such as the
limit corresponds tdN— o while the parameters of the map kicked rotor on the cylinder are known to suppress classical
such as the kick strengths are scaled and dimensionless. chaos and lower diffusiof3]. The corresponding suppres-

The first observation is that the quantum correlation is insion in the case of bounded systems is in the average relax-
fact quite close to the classical value of unity; second is thaation such as measured bg). We note that the sum over
the average of the oscillations in relation to unity will give usn andn’ expressing the average can be factored into two
some information about whether quantum mechanics is insingle sums, and we see that if, for instance, we had a parity
hibiting transport or otherwise; third, this average must in thesymmetry forcing the wave function to be essentially identi-
classical limit tend to unity, fourth is the observation that thecal in the subspaces andB we would have(c)=1, which
fluctuations are getting smaller in the classical limit and musis indeed the case for the fluctuations shown in Fig. 1. The
tend to zero. Some of these observations have been made ameerage/c) could also be greater than unity in the presence
substantiated earlidi7], here we will elaborate and present of symmetries, or if the partitioB is identical toA. Al-
more results. though in the absence of any special symmetry it is true that
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FIG. 2. The average of the fluctuations fea the quantum FIG. 3. The average relaxation as a function of the kicking
baker map quantizing thé2/3,1/3 Bernoulli scheme andb) the  Strength for(@) the standard mayb) the Harper map. The solid line
standard map with = 20. Shown is the logarithm of the deviation Corresponds t&l=300 while the dotted one thi=200.
from unity as a function of Iriy).

fN-1 4
2

classical chaos will tend to enhance the average making it 02=ﬁ > 1> (n|¢m2><¢ml|n) .
closer to unity, this effect is quite marginal and practically N=f2(1—f)“mp>m, | n=0

nonexistent when a transition to complete classical chaos is

achieved.

Figure 2a) shows the average for the quantized bakerThus the variance measures a correlation between distinct
map implementing the Bernoulli scheme (2/3,1/3) as a funcpairs of eigenfunctions. There is a coherent partial sum over
tion of the inverse Planck constaNt The partitions are such Nf states that makes the variance nontrivial and perhaps
thatf ,=fg=1/2. Shown is the deviation of the average fromnonuniversal.
unity and an approximate power law is observed for laMge
Thus we can write 10

(2.9

(c)~1—aN7?, (2.7

and in this casey~3/4. The relaxation localization is im- =,
plied by « being positive. Figure (®) shows the same quan-
tity for the standard map and we find for the partition
fa=1/4fg=3/4 thaty~1, with a different value otx. We

note that in both the cases there is a small oscillation about
the fitted straight line. Figure(8 shows the variation of the
average with the classical kick paramelefor the standard
map, the map undergoing a transition to complete chaos with 10
the breaking of the last KAM torus &~ 1. The partitionA i
was such thaf ,=1/4 andB was the complementary space. 8r
Also illustrated is the localization effect and the same for the = |
kicked Harper model in Fig.(®). The kicked Harper map, or
simply the Harper map, undergoes a transition to chaos at the
kick strengthg~0.63 (see Appendix

6_

0 1 2 3 4

g

B. The variance and the distribution

A promising candidate is the variance of the fluctuations
which exist irrespective of the symmetries of the system. F|G. 4. The scaled standard deviatioi as a function of the
This can also be eXprgssed in terms of the elgenfungtlons ®fck strength for(a) the standard mapb) the Harper map. The
the system. In the particular case whHen+ Pg=1, writing solid line corresponds thl=300, the dotted line tdl=200 and the
for f, simply f, we get after some simplifications dashed line tdN=100.
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In(co)

FIG. 5. The standard deviation as function of the scaled inverse FIG. 6. Same as F|g 5 for the standard map at different values

Planck constarii on a logarithmic plot. The solid line corresponds of the kick strengttK, the dashed line correspondske- 30, while
to a standard map witK =20, the dotted line to the Harper map the solid toK = 20.

with g=4, the small dashed line to the usual symmetric quantum

baker map, and the large dashed line to the unsymmetric (2/3,1/3&230 the exponent is already close to unity and the two

baker map. cases are practically indistinguishable.
. _ Whenf # 1/2 the relaxation is between nonsymmetrically

Figure 4a) shows the standard deviatienscaled tooN  ojateqd partitions of unequal measures. The quantum vari-
as a function of the kick strength in the case of the standard, .« is studied directly as a function bfStill we are con-
map. The transition to classical chaoskat-1 is visible in  gjqering the case when the two partitions complement each
the variance of the fluctuations as a point at which it attaing,iher Results not shown here indicate that the dependence of
an approximately constant value. The relaxation fluctuation§he standard deviation ol (or #) remains the same,
are therefore significantly different depending on the dy'namely N-L. Thus we may conjecture the existence of a
namical nature of the classical limit, being in general largerfunctior;g(f) such thair = g(f)/N. The functiong(f) will

for regu_lar sys_tems 'ghan chaotic ones, and th_us provide_ ﬁaturally depend on the choice of the density operalRys
novel diagnostic device for the study of quantized chaotic, 4 Ps . If further we choose these operators as the projec-

systems. : : ;
Figure 4b) shows identical quantities for the case of the;:ﬁg t%[()aerrgt:triindescnbed by the E.2), we numerically

kicked Harper map. The variance seems to have no further

dependence on measures of chaos and scalesjage uni-

versally when the classical limit is chaotic. This scaling is (2P N 21
shown explicitly in Fig. 5 for three systems in the chaotic 7T IeNf(1-1)" <t=le, (210
regime: the kicked rotor, the kicked Harper map, and the

usual quantum baker map. _The fact that the three Ilnes, vavhereﬁm0.83. The constant has been identified as related to
slope close to—1, are practically on top of each other is

evidence of a limited universality of the relaxation fluctua- the numbern by averaging over differerk in the chaotic

tions. The limits to universality will be discussed in the fol- regime. Beyond =1/2 symmetry of the maps ensures that

lowing, but also shown in the figure are the results for aa(f):(r(l_f)' It is to be emphasized that althoughis

generalized baker map implementing the (2/3,1/3) Bernoull ndependent of model parameters I|K(_e.we are assuming
scheme, which clearly shares the same slope but is differe l?at there has been a completed transition to full scale chaos.

. _ . . 2 B
otherwise from the other cases, which are symmetric. f Iilrg];uret ’ gorgpare:arl:lhf(lH f) with the f'g Ttrh(ZI)) k/16
When the classical limit is regular there is still evidence or the standard map, thé Harper map an € baker map.

for scaling with# but with nonuniversal exponents. Thus The standard map and the Harper fall pract!ce}lly on top of
Fig. 6 suggests that for the standard map, each other while the baker map shows deviations although

the trend is maintained. The insensitivity of this curve to the
B parameteiK or g indicates that once chaos is achieved the
o~N"7, (29 fiyctuations are essentially the same. The cunié as a
function of f is thus interesting in that it has restricted uni-
with the exponenty increasing to unity as the kick strength versal features. The Harper and the standard maps behave
is increased to induce the transition to chaos. WiKer20 or  almost identically while there are deviations for the baker;
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FIG. 7. The standard deviation normalizedddif(1—f) as a FIG. 8. The standard deviation as a function of the kick strength

function of f. The solid line is the ﬁ(see texl, while the dotted line for the standard map witNl=200. The dotted line Corresponds to
corresponds to the standard mafKat 20, the short dashed line to ysing projection operators constructed out of every alternative po-
the Harper map wittg=4 and the long dashed line to the usual sjtion basis and the dashed line to projection operators constructed
baker map. In all case¥=200. out of the eigenbasis of the standard magKat155. For compari-

. . son is shown the case of the usual projection operator from Fig. 4.
moreover the curve is most definitely dependent on the op-

eratorsP, and Pg, but once this is fixed the fluctuations
might be model independent. and Py is similarly constructed. In the computation shown
Though the fluctuations are not universal they do distin-below we have takeA to be the subspad®,1/2)x[0,1/2)
guish classically regular and chaotic motions when the opandB to be[1/2,1)X[1/2,1). The variance is evaluated as
eratorsP, and Pg have meaningful classical limits. If this above with some minor differences, sineg#1—P,. The
condition is violated then the fluctuations are incapable ofneasures of the quantum subspacesNf#&, as we have
such a separation. This is in contrast to RMT based argudsed normalized coherent states. The eigenfunctions are ex-
ments for the randomness of a wave function, where so mucpressed in the coherent state basis and the variance is evalu-
information is lost that in any generic basis the wave func-ated. Figure 9 shows the results of this computation and once
tions of a classically chaotic system are universally distribmore we recover the property that the variance captures the
uted. We will illustrate this in two ways. In the first we classical transition to chaos. Not presented are some more
choose Po=ZXnee{n)(n| and Pg is the complementary resylts, in particular the computations using the momentum
space. Clearly in the classical limit these projection operatorg ggis vectors, as these simply reflect the general trends al-
do not describe meaningful phase space regions. In the S€fsady noted above.

ond we choose half.the eigenbas!s of the kicked rotor at We have been studying the mean and standard deviation
K=155 for constructing®, and Pg is the complementary of a quantity that is truly a quasiperiodic oscillation; the

'?rg?](;iet.io?gtﬂrihisgoggsa:gﬁﬁléh—elv?gra&(;eI(Ciic?lfes dnroott(c):?pl'il;r_e Wistribution of such a quantity ought to be significantly dif-
- ! ferent from a random process. However, Fig. 10 motivates

like in the cases above, one of which has been repeated f?ﬁat the effect of quantum chaos is to cast the oscillations
comparison purposes. However, once the transition to chaost the ubiauit q G ; qi inal
is complete the three standard deviations seem to coincigg!*0 the ubiqurtous Laussian process, and increasingly more

We have diagonalized a standard magKat 155 to ensure so in the classical limit, thereby indicating that the mean and
that there are no special correlations with the system a§tandard deviation are sufficient to characterize the relax-

aroundK =4 ation process. The solid line is a Gaussian distribution with

Finally we construct the operators out of coherent state€r0 mean and standard deviation equatrfed, as the par-
so that the interpretation as subspaces of phase space is ffions used correspond fa = fg=1/2. In sharp contrast Fig.
tuitively obvious in the classical limit. We use the discrete1l shows the same for the case of the standard map at
toral coherent states developed by Saraddrid Let |m,n) K=0.2 when the dynamics is predominantly regular. The
be such a state that is localized gt={m/N,p=n/N) on the distribution is much broader and is also nonsymmetric. Thus

unit torus. We take if the parameteK is considered as a pseudo time variable,
the onset of chaos is signaled as the realization of a station-
P,= 2 |m,n)(m,n| ary state of the relaxation fluctuations—the Gaussian distri-

(q,p)eA bution.
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FIG. 9. The standard deviation as a function of kick strength for  FIG. 11. Same as Fig. 10 but for the case wien0.2 corre-
the standard map using the operators constructed out of toral cohegponding to predominantly regular motion. The solid line still cor-
ent states, see text. responds to the same Gaussian.

. SUMMARY smaller than the classical, and we have presented some scal-

We have studied the quasiperiodic relaxation in bound'ng relations W.ithh' . .
quantum systems whose classical counterparts relax to a The relaxation fluctuations have been shown to provide
coarse grained equilibrium. We have concentrated on th ather interesting characterization of the quantum motion.
correlations between density operators whose classical Iimitt Zesi ;r%rrl]i(rer?i?(;zsTﬂgvk?ck%rgvrﬁsagn%hﬁr::ﬁ?rlng?noac:g]lc\)/tlji?:
(or. more correctly the limit of the!r W|g_ner—WeyI represen- identical s mmefr roperties ha?/e been shovsn to be practi-
tationg may be interpreted as piecewise continuous func- y Yy prop P

tions on phase space. We have observed that in the absen?#ly |E[jen(;|ca(ljl 'g thetmha}”&r of tr]c]lewtreI?xanr? quctt)uatlonts.d
of special symmetries the average quantum relaxation i € standard deviation of these fluctuations have been stud-

ied and has been shown to decrease to a constant value with
a rather sharp change in the values corresponding to the tran-
] sition to chaos in the classical system. Thus the fluctuations
provide a way to characterize quantum chaos. The standard
deviation has been shown to scalefiaghen there is classi-
cal chaos universally, while it has other nonuniversal power
3 law dependencies when the classical motion is not chaotic.
Random matrix theories have been providing a frame-
work to study several properties of quantized chaotic sys-
tems and it is natural to explore the random matrix predic-
tions for the quantities studied in this note. It is of special
interest to place the numerical results in this paper in the
context of a generalization of the previous work on survival
probabiltied 8] and work on these aspects is currently under-
E way.
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004 b _ APPENDIX

002 [ E The Taylor-Chrikov, or the standard map, or the kicked
3 rotor, used in this paper is described belf8yl12]. Let the
classical map b@d+1=0t+Prs1,  Pre2=Pe— V' (A1) ]
N(c—<c>) bothqg andp taken mod 1V’ is the derivative of the kicking
potential, which is assumed to have unit periodicity. The
FIG. 10. The distribution of the relaxation fluctuations using thetoral states are assumed to satisfy certain boundary condi-
first 5000 ¢(t) values for the standard map with=20 and(a)  tions specified by a point on the dual torus. [eH) and|p,,)
N=100 (b) N=200. The solid line corresponds to a Gaussian dis-be the positon and momentum states then
tribution. |Pmeny=€"2"2|py) and |d,.n)=€°""|qy,), where @,b)
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are real numbers between 0 and\lis the dimensionality of [q,,;=0,+9;SIN27Ps1), Pr1=P—0SiN(2r)],  again
the Hilbert space. Ib=0, upon canonical quantization we the mod 1 rule is assumed. df; , are equal, as assumed in
get the finite unitary operator this paper, the transition to chaos occurs arogpe=0.63.
) In both the kicked Harper model and the rotor the time be-
U = e—ex;{ —ZwiNV<E) exp( i z(n—n’)z) tween kicks has been taken as unity, as anyway there are two
n.n’ \/ﬁ N N ) parameters in the quantum problem, the scaled Planck con-
(A1) stantN and the kick strengthK or g).
The baker map10,11] comes in several varieties. It has
In this paper we have used for the standard mafbeen shown that  the usual baker map
V(q)=Kcos(2rg)/(2m), anda=1/2 which makes the quan- [(q,;;=20;, Pi+1=pP/2) if 0<q;<1/2 and
tum map possess an exact parity symmetry alipatl/2. (g, ,=20,—1, Ppi1=(pi+1)/2) if 1/2<q,<1] is iso-
The values oN are restricted to the even integers. morphic to the (1/2,1/2) Bernoulli process. The quantum

The kicked Harper maf®] on the torus is similar to the baker map on the torus is then the unitary operator
above system except for the momentum dependence. If the

Hamiltonian is . (GNIZ 0 )
U=aG , (A3)
o N1 oo G
H=Vi(p) + Vz(Q)n_Zw o(t—n), where Gy, is the finite Fourier transform matrix with ele-
a ments
the quantum map is 1
ntal Vol (GN)m,n=\/—Nexp(—27ri(m+ 1/2)(n+1/2)/N).
Un,n/zNex —2mwiNV, N
m=0 We have assumed antiperiodic boundary conditions
m+b (a=b=1/2) as this is known to preserve classical symme-
X exp{ —2mwiNV; N tries.

The generalized baker map used in this paper is a dynami-
2 cal system implementing the (2/3,1/3) Bernoulli process and
><ex%T(mJr b)(n—n’)). (A2) is the classical map((Q+1=30/2, Pi+1=2p/3) if
0<q<2/3 and [0i+1=30—2, p+1=(P+2)/3] if
For the Harper map used in this paper we have takeR/3<d;<1). The quantum map is the unitary operator
(a=b=1/2), V.(p)=-—g.cos(Zmp)/(2m) and V,(q) G 0
= —g,cos(27g)/(2m). This set once again ensures symmetry U=Gg* ( ;“”3 R ) _
N/3

(A4)
properties of the quantum map. The classical map is
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